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Direct numerical simulation (DNS) is used to examine low Froude number free-
surface turbulence (FST) over a two-dimensional mean shear flow. The Navier–Stokes
equations are solved using a finite-difference scheme with a grid resolution of 1283.
Twenty separate simulations are conducted to calculate the statistics of the flow.
Based on the velocity deficit and the vertical extent of the shear of the mean flow,
the Reynolds number is 1000 and the Froude number is 0.7. We identify conceptually
and numerically the surface layer, which is a thin region adjacent to the free surface
characterized by fast variations of the horizontal vorticity components. This surface
layer is caused by the dynamic zero-stress boundary conditions at the free surface
and lies inside a thicker blockage (or ‘source’) layer, which is due to the kinematic
boundary condition at the free surface. The importance of the outer blockage layer is
manifested mainly in the redistribution of the turbulence intensity, i.e. in the increase
of the horizontal velocity fluctuations at the expense of the vertical velocity fluctuation.
A prominent feature of FST is vortex connections to the free surface which occur
inside the surface layer. It is found that as hairpin-shaped vortex structures approach
the free surface, their ‘head’ part is dissipated quickly in the surface layer, while
the two ‘legs’ connect almost perpendicularly to the free surface. Analysis of the
evolution of surface-normal vorticity based on vortex surface-inclination angle shows
that both dissipation and stretching decrease dramatically after connection. As a
result, vortex structures connected to the free surface are persistent and decay slowly
relative to non-connected vorticities. The effects of surface and blockage layers on the
turbulence statistics of length scales, Reynolds-stress balance, and enstrophy dynamics
are examined, which elucidate clearly the different turbulence mechanisms operating
in the respective near-surface scales. Finally we investigate the effect of non-zero
Froude number on the turbulence statistics. We show that the most significant effect
of the presence of the free surface is a considerable reduction of the pressure–strain
correlation at this surface, compared to that at a free-slip flat plate. This reduction is
finite even for very low values of the Froude number.

1. Introduction
The physics of free-surface turbulence (FST) is essential to free-surface phenomena

and processes such as the turbulent air–water interface, wind–wave interactions,

† Author to whom correspondence should be addressed.
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post-breaking processes, and wakes. Recently, owing to the need to interpret the
experimental data from remote sensing of ship wakes, FST became an active area
of research. On a fundamental level, the study of FST may yield new insight into
basic turbulence research. Therefore, there is a critical need to understand its basic
mechanisms.

It should be pointed out that FST differs fundamentally from its counterpart,
turbulence near a rigid wall. In general, a free surface affects turbulence by means
of two mechanisms. First, in the absence of wind, the tangential stresses at the
free surface should be zero, while near a rigid wall, velocity gradient is large, which
makes turbulence production and dissipation significant there. Second, the free surface
restricts motion in the normal direction only, while a no-slip condition at a rigid wall
makes velocity components in all directions vanish.

Much of the work on turbulence in the past has been directed towards wall
turbulence. Hunt & Graham (1978) analyse an interesting variation of the problem
of turbulence interaction with a rigid wall, which resembles somewhat a stress-free
boundary. They introduce a semi-infinite rigid wall which moves with the same speed
as the mean velocity of grid turbulence. Near the wall, they identify two distinct
boundary layers: an inner viscous layer and an outer source layer. Although the
problem of Hunt & Graham (1978) is strictly not FST, it identifies some of the
features characteristic of free-surface turbulence, and has inspired a number of other
investigations in this area. Most of these investigations use the ‘rigid lid’ or ‘free slip’
approximation for the free surface, i.e. a flat surface with zero stresses but also zero
normal velocity. This corresponds to the problem of free-surface turbulence in the
limit of zero Froude number.

Perot & Moin (1995) use a novel idea to study the influence of a rigid wall on
turbulence by considering separately two fictitious problems with ‘simpler’ boundary
conditions. The first is a boundary which enforces no-slip but is otherwise permeable.
This isolates and elucidates the viscous effects of a rigid wall. The second one they
consider is in fact a flat free-slip boundary. This they use to isolate and investigate
the kinematic effects that occur near the boundary. They find that it is the imbalance
between splats and antisplats that leads to inter-component energy transfer near the
surface. This imbalance is controlled by viscous processes and is found to be small
for grid FST where there is no mean shear in the bulk flow underneath.

While Perot & Moin (1995) focus on the immediate effect of the presence of a free-
slip boundary, Walker, Leighton & Garza-Rios (1996) study a similar grid FST case
but consider the late time development after the imposition of the boundary. They
identify two boundary layers where velocity and vorticity respectively are anisotropic
and the thicknesses of these two layers are respectively the turbulence length scale
and one-tenth of the turbulence length scale. Their analysis of the Reynolds-stress
balance and enstrophy budget shows that the flow is fully three-dimensional up to
the free surface.

Besides grid FST, another type studied in the past is that of open-channel flow.
Early DNS work can be traced back to Lam & Banerjee (1988), Handler et al. (1991),
Leighton, Swean & Handler (1991), and Swean et al. (1991), among others, who study
the turbulent flow between a no-slip wall and a free-slip plate. Leighton et al. (1991)
investigate the interaction of vorticity with the free surface and propose two models
– the ‘spin’ model and the ‘splat’ model, which follow a description by Bradshaw
& Koh (1981). Handler et al. (1993) study the Reynolds-stress balance and report
that the dissipation rate exhibits a sharp drop near the surface. Handler et al. (1993)
also study the variation of length scales and propose a ‘pancake’ model to explain
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the increase of horizontal length scales and the decrease of vertical scales. These
observations are reconfirmed and extended in the present study.

Vortex structures in open-channel flow is studied by Pan & Banerjee (1995). They
identify large-scale persistent structures at the free surface, which include ‘upwelling’,
‘downdraughts’, and ‘attached vortices’. They find that the attached vortices are
particularly long-lived and tend to interact with each other unless destroyed by
other upwellings. They conclude that turbulence structures near the free surface are
quasi-two-dimensional.

Approximation of the free surface by a flat slip-free plate (zero Froude number
limit) facilitates the numerical simulation and has been used extensively in the
literature (Lam & Banerjee 1988; Handler et al. 1991; Leighton et al. 1991; Swean et
al. 1991; Handler et al. 1993; Pan & Banerjee 1995; Perot & Moin 1995; and Walker
et al. 1996, among others). Komori et al. (1993) use a non-zero Froude number which
is however so small that there are no non-trivial differences from the zero Froude
number case. Recently Borue, Orszag & Staroselsky (1995) studied the interaction of
surface waves with turbulence in an open channel and find that the effect of non-zero
Froude number on the turbulence statistics they examined is weak.

In the present paper we investigate numerically the development of turbulent shear
flow under a free surface. The instability of this flow has been studied by Triantafyllou
& Dimas (1989) and Dimas & Triantafyllou (1994). Aspects of this flow regarding
the effects of underlying structures on surface roughness are described in Tsai (1998).
In this study, we perform DNS for a large number of realizations of this free-surface
turbulent shear flow to obtain reliable statistics. Through these simulations, we are
able to: (i) identify the surface layer and the blockage layer and quantify the dynamics
within these layers; (ii) understand the dynamics of surface vortex connections in FST
and the underlying mechanisms for the persistence of such connected structures; and
(iii) obtain the dominant effects of (even small) Froude number on the statistical
characteristic of FST as compared to say turbulence under a free-slip wall. The
elucidation of surface and blockage layers and their dynamics provides a coherent
framework for understanding FST which clearly distinguishes it from turbulent flow
near a no-slip wall, and, in a not insignificant way, from that near a free-slip wall.

This paper is organized as follows. In § 2, the concept of the surface layer and the
blockage layer is introduced. In § 3, we outline the numerical scheme and provide
specific quantitative results showing the presence of the surface and blockage layers.
The spatial and temporal development of the surface layer during vortex surface
connection events is studied in § 4. In § 5, we present the effects of the surface and
blockage layers on the turbulence statistics with special emphasis on the turbulence
length scales, Reynolds-stress balance and enstrophy dynamics. Finally, in § 6, we
investigate the effect of Froude number on the FST statistics. For small (non-zero)
Froude number, we find that the effects are relatively small with the exception of the
pressure–strain correlations which show qualitative differences as a result of the free
surface. We conclude in § 7 with a discussion and a summary.

2. The surface layer and the blockage layer
In this section we discuss the concept of the boundary layer that develops at a

clean free surface. The frame of reference has axes x, y, z (also denoted as x1, x2,
x3 when tensor notation is used), where x and y are horizontal, z is vertical, positive
upward, with the z = 0 plane coinciding with the undisturbed free surface.

The governing equations for the velocity components ui (also denoted as u, v, or w)
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are the Navier–Stokes equations

∂ui

∂t
+
∂(uiuj)

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
, i = 1, 2, 3, (2.1)

and the continuity equation

∂ui

∂xi
= 0. (2.2)

Here and hereafter, all variables are normalized by the characteristic (macro) length
scale L and the characteristic velocity scale U of the flow. The dynamic pressure p
is normalized by ρU2, with ρ the fluid density. Re ≡ UL/ν is the Reynolds number,
with ν the kinematic viscosity.

We assume that the Froude number Fr ≡ U/(gL)1/2 is small but not zero. Therefore,
we use linearized free-surface boundary conditions at the position of undisturbed free
surface z = 0.

(a) At the free surface, z = 0, the tangential stresses vanish:

1

Re

(
∂u

∂z
+
∂w

∂x

)
= 0 on z = 0, (2.3)

1

Re

(
∂v

∂z
+
∂w

∂y

)
= 0 on z = 0. (2.4)

(b) At the free surface, the normal stress vanishes which gives (neglecting surface
tension)

p =
h

Fr2
+

2

Re

∂w

∂z
on z = 0, (2.5)

where h(x, y, t) is the free-surface elevation.
(c) Finally, the fact that the free surface moves as a material surface gives

∂h

∂t
= w − u∂h

∂x
− v ∂h

∂y
on z = h. (2.6)

By linearization we obtain the kinematic boundary condition at the undisturbed
free surface as

∂h

∂t
= w − ∂

∂x
(uh)− ∂

∂y
(vh) on z = 0. (2.7)

For Re � 1, the first term on the right-hand side of (2.5) is much larger than
the second term, so that the requirement of vanishing normal stress is effectively an
inviscid boundary condition. The effect of viscosity is thus manifest primarily through
the vanishing of the tangential stresses (2.3) and (2.4). This can be seen most clearly
in the horizontal components of the vorticity ωi at the free surface. Using (2.3) and
(2.4), we obtain

ωx =
∂w

∂y
− ∂v

∂z
= −2

∂v

∂z
= 2

∂w

∂y
on z = 0, (2.8)

ωy =
∂u

∂z
− ∂w

∂x
= 2

∂u

∂z
= −2

∂w

∂x
on z = 0. (2.9)

For small Froude numbers, h and w at the free surface are small, and it follows that
ωx and ωy are small at z = 0. Finally, using the fact that vorticity is divergence free,
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Figure 1. Definition sketch for shear-flow FST.

we obtain from (2.8) and (2.9) the boundary condition for ωz on the free surface:

∂ωz

∂z
= 0 on z = 0. (2.10)

This simple analysis shows that, for flows with significant vorticity, there exists a
surface layer inside which the values of ωx, ωy , and ∂ωz/∂z (but not ωz itself) change
from their ‘outer’ values to the much smaller values specified by (2.8), (2.9) and (2.10).

We note that the surface layer is thin for high Reynolds number. For laminar flow,
a typical argument of balance between viscous and convection terms in the evolution
equations for ωx or ωy shows that the thickness of the surface layer is proportional
to the square root of the Reynolds number.

The surface layer, which is due to the viscous dynamic boundary conditions, is
distinct from the so-called ‘blockage’ or ‘source’ layer, which is due to the kinematic
boundary condition. The importance of the blockage layer is manifested mainly in
the redistribution of the turbulence intensity, i.e. in the reduction of the vertical
velocity fluctuations and the increase of the horizontal velocity fluctuations. From the
continuity equation, the blockage layer has a thickness of order macroscale L.

The surface layer is unique to free-surface viscous flows, while the blockage layer
obtains in principle for any flows with a boundary constraining the normal motion,
for example, rigid wall flows and free-surface potential flows.

3. Numerical confirmation of the surface layer and the blockage layer
To elucidate the behaviour and to obtain quantitative properties of the surface

layer, we perform direct numerical simulations of the incompressible Navier–Stokes
equations for a turbulent shear flow evolving under a free surface.

3.1. Problem definition

We consider a three-dimensional incompressible turbulent flow in the presence of a
free surface. As shown in figure 1, the turbulent flow has a mean velocity u(z, t) in
the x-direction with the initial profile

u(z, t = 0) = 1− 0.9988 sech2(0.88137z), (3.1)

which is half of the mean velocity profile measured in the wake of a NACA 0003
hydrofoil in unbounded fluid (Mattingly & Criminale 1972). Here and hereafter, the
initial mean shear flow depth L and velocity deficit U are used to normalize all the
variables. Note that (3.1) is Galilean transformed with U as in the simulations.
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The Orr–Sommerfeld stability analysis of the velocity profile (3.1) has been per-
formed by Triantafyllou & Dimas (1989) and a detailed study on the nonlinear
evolution of the instability is reported by Dimas & Triantafyllou (1994). Unlike
open-channel flow, the turbulence in this sheared FST is generated solely from the
mean shear in the bulk flow and is especially relevant to applications in naval
hydrodynamics, such as ship wakes, and geophysical flows.

The motions of the flow are described by the Navier–Stokes equations (2.1) and the
continuity equation (2.2), with the linearized free-surface boundary conditions (2.3),
(2.4), (2.5), and (2.7).

At the bottom z = −D, we impose free-slip conditions:

∂u

∂z
=
∂v

∂z
= 0, (3.2)

w = 0, (3.3)

∂p

∂z
= 0. (3.4)

Thus there is no turbulence production at the bottom and turbulence energy is
extracted solely from the mean shear in the bulk flow. Finally we impose periodic
boundary conditions in both horizontal directions.

3.2. Numerical scheme

The primitive-variable form of Navier–Stokes equations (2.1) and continuity equation
(2.2) are solved numerically as an initial-boundary-value problem. The numerical
method we use traces back to the marker and cell (MAC) method developed by
Harlow & Welch (1965). We first use a projection method, which couples the continuity
equation with the Navier–Stokes equations, to obtain a Poisson equation with a
divergence correction for the pressure. The Poisson equation for the pressure is solved
at each timestep. The simulation is then advanced explicitly to the next step. More
specifically, knowing uni , i = 1, 2, 3, at the current timestep, the time-discrete form of
(2.1) is

un+1
i − uni

∆t
+
∂(uiuj)

n

∂xj
= −∂p

n

∂xi
+

1

Re

∂2uni
∂xj∂xj

. (3.5)

Taking the divergence of (3.5) on both sides and invoking the continuity equation at
the next step:

∂un+1
i

∂xi
= 0, (3.6)

we obtain the following Poisson equation for the pressure pn:

∂2pn

∂xi∂xi
=

1

∆t

∂uni
∂xi

+
∂

∂xi

(
−∂(uiuj)

n

∂xj
+

1

Re

∂2uni
∂xj∂xj

)
. (3.7)

This Poisson equation is solved subject to Dirichlet condition (2.5) at the free surface,
Neumann condition (3.4) at the bottom, and periodic conditions in the horizontal
directions. After the pressure pn is obtained, velocity components are advanced
explicitly in time using (3.5). In this study we use a second-order Runge–Kutta
scheme for the time integration.

For space discretization, we use sixth-order finite-differences in the horizontal
directions and second-order finite-difference in the vertical direction. To ensure mass
conservation to machine accuracy, a staggered-grid system is employed in the vertical
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direction wherein u, v, and p are assigned at regular grid positions while w is
assigned at the positions with a vertical shift of half a grid spacing. In addition, mass
conservation also requires that the horizontal operator ∂2p/∂x2 (similar for ∂2p/∂y2)
be approximated by

∂2p

∂x2

∣∣∣∣
i

=
1

3600∆x2
(pi−6 − 18i−5 + 171pi−4 − 810pi−3 + 1935pi−2 + 828pi−1 − 4214pi

+828pi+1 + 1935pi+2 − 810pi+3 + 171pi+4 − 18pi+5 + pi+6) + O(∆x6), (3.8)

instead of the conventional form

∂2p

∂x2

∣∣∣∣
i

=
1

180∆x2
(2pi−3 − 27pi−2 + 270pi−1 − 490pi

+270pi+1 − 27pi+2 + 2pi+3) + O(∆x6). (3.9)

The argument is similar to Kwak, Reynolds & Ferziger’s (1975) fourth-order case and
will not be repeated here.

It should also be pointed out that the horizontal convection terms in the Navier–
Stokes equations need a special energy-conservative scheme to avoid nonlinear insta-
bility (e.g. Kwak et al. 1975). Take the term ∂(uv)/∂x, for example:

∂(uv)

∂x

∣∣∣∣
i

=
3

8∆x
(ui+1vi+1 − ui−1vi−1 + ui(vi+1 − vi−1) + vi(ui+1 − ui−1))

− 3

40∆x
(ui+2vi+2 − ui−2vi−2 + ui(vi+2 − vi−2) + vi(ui+2 − ui−2))

− 1

120∆x
(ui+3vi+3 − ui−3vi−3 + ui(vi+3 − vi−3) + vi(ui+3 − ui−3))

+O(∆x6). (3.10)

It can be shown that in the absence of viscous terms and time-differencing errors,
this scheme conserves energy to machine accuracy. A similar proof to this can again
be found in Kwak et al. (1975).

Among the free-surface boundary conditions (2.3)–(2.7), the tangential dynamic
conditions (2.3) and (2.4) are used in computing z-derivatives in (2.1); the normal
free-surface dynamic condition (2.5) is used in the boundary condition for (3.7); and
the kinematic free-surface condition (2.7) is used to update the free-surface elevation
h in time.

3.3. Computational parameters

In this study, the Reynolds number Re = UL/ν is 1000 and the Froude number
Fr = U/(gL)1/2 is 0.7. If the velocity scale is based on the turbulence fluctuation
instead, which we choose to be order of one tenth of U, the Reynolds number
Req ' 100 and the Froude number Frq ' 0.07. The computational domain size
is 10.472 × 10.472 × 4 and we use a 1283 grid. The horizontal domain size 10.472
corresponds to the minimum wavenumber 0.6, which is close to the most unstable
mode for the mean shear profile (3.1) (Triantafyllou & Dimas 1989). The simulation
is carried out from t = 0 to 90, with time step ∆t = 0.005.

A rough estimate based on the theory of isotropic homogeneous turbulence (Ten-
nekes & Lumley 1972) gives the (dimensionless) Kolmogorov scale:

η ∼ ε−1/4Re−3/4 ' 0.04. (3.11)
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Here ε is the (dimensionless) dissipation rate for turbulence kinetic energy and is
found to be O(0.0005) in our numerical results (figure 20). The grid size in the
horizontal directions is

∆x = ∆y =
10.472

128
' 0.08; (3.12)

and the grid size in the vertical direction is

∆z =
4

128
' 0.03. (3.13)

Thus the grid size is of the same order as the Kolmogorov scale.
To ensure that the dynamically significant scales are resolved, we also carry out

a high-resolution simulation using a 2563 grid, with a time step ∆t = 0.00125, as
well as a low-resolution simulation using a 643 grid. Comparison among the different
resolutions of the 643 grid, 1283 grid, and 2563 grid shows that the difference between
the 1283 grid and 2563 grid is small (cf. figure 4 for profiles of the mean flow velocity
and the turbulence intensity).

The initial turbulence field in our simulation is implemented by the superposition of
divergence-free random velocity noise upon the mean flow (3.1). Initially this random
velocity noise is made to vanish at the free surface and the surface elevation is zero.
As time goes on, energy is extracted from the mean shear flow to turbulence as the
turbulent flow develops. From this point of view, the initial perturbations serve only
as ‘seeds’ for the turbulence. This is in contrast with the cases of purely decaying
turbulence, where the initial turbulence field needs to be constructed carefully, usually
to match the experimental measurements.

To obtain convergent results for statistics, we perform repeated simulations using
different seeds for the initial random field. Our experience shows that the variances
become sufficiently small beyond about 20 simulations. Unless otherwise stated, all
the results we present are ensemble averaged over (at least) 20 DNS realizations.

For later reference, we define the statistical average over the horizontal plane, where
the turbulent flow is statistically homogeneous. For any variable f(x, y, z, t), f(z, t)
stands for the average over the horizontal plane; f′(x, y, z, t) ≡ f − f denotes the
instantaneous fluctuation; and frms(z, t) ≡ ( f2 )1/2 its root-mean-square value.

3.4. Overview of the flow field

In this subsection, we give an overview of the time evolution of the shear flow. As
pointed out earlier, turbulence is initially absent at the free surface and the surface is
calm at t = 0. Supplied by the shear flow underneath, turbulence develops at the free
surface as time evolves.

Figure 2 plots the time evolution of free-surface turbulence kinetic energy q2
0 ≡

(u′2 + v′2 + w′2)|z=0, the fluctuation of free-surface elevation h′rms, and their standard
deviations. Initially, both the free-surface elevation and the turbulence intensity at the
surface are zero. As free-surface turbulence develops, the flow reaches a quasi-steady
state after about t = 40. At this quasi-steady state, the velocity fluctuation at the
free surface q0 is O(0.1), which makes the Reynolds number based on turbulence
intensity Req ≡ q0L/ν ' 100 and the Froude number Frq ≡ q0/(gL)1/2 ' 0.07. The
fluctuation of the surface elevation h′rms is about 0.005. Figure 2 shows that the free-
surface elevation h′rms normalized by Fr2 is comparable to the free-surface turbulence
kinetic energy q2

0/2. This is indicative of the fact that some of the kinetic energy is
transformed to potential energy in the surface fluctuations. Figure 2 also shows that
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Figure 2. Evolution of (a) ———, free-surface turbulence kinetic energy q2
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and (b) ———, fluctuation of free-surface elevation h′rms/(2F2
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Figure 3. Evolution of (a) mean shear flow profile u(z, t); and (b) turbulence intensity profile
q2(z, t). · · · · · · ·, t = 0; — —, t = 5; – . – . –, t = 20; − . .− . .−, t = 40; ———, t = 60;
– – – –, t = 80. In (a) ———◦ is the mean flow profile for a laminar shear flow at t = 60. The
laminar flow has the same initial profile (3.1) but Reynolds number Re = UL/ν=100.

at later time (t > 75), dissipation exceeds the supply from below and the free-surface
turbulence decays.

We plot in figure 3 the evolution of the mean shear flow profile u(z, t) and turbulence
intensity profile q2(z, t) = u′2 + v′2 +w′2. Owing to diffusion, the mean shear flattens as
time increases. As expected, the diffusion due to turbulence transport is much larger
than would be expected due to laminar diffusion. For a laminar shear flow with the
same initial profile (3.1), we find that an equivalent Reynolds number to obtain a
similar evolution of the mean velocity deficit is given by Re = UL/ν ≈ 100. This is



176 L. Shen, X. Zhang, D. K. P. Yue and G. S. Triantafyllou

0.01 0.02 0.03

(b)
–0.2

0
0.2 0.3 0.4 0.5

(a)

u q2

z

–0.4

–0.6

–0.8

–1.0

–0.2

0

–0.4

–0.6

–0.8

–1.0

Figure 4. Comparison of (a) mean velocity u and (b) turbulence intensity q2 at t = 40 for different
DNS resolutions: – . – . –, 643 grid; – – – –, 1283 grid; and ———, 2563 grid.

shown in figure 3(a) which plots the comparison between the mean flow profiles for
turbulent flow (Re = 1000) and laminar flow (Re = 100) at t = 60.

To show the convergence of the DNS, we plot in figure 4 the comparison between
the results using the 643, 1283, and 2563 grids. The difference between the 1283 and
2563 resolution results is small, which indicates that the 1283 grid is sufficient for
solving the problem.

In this study we focus on the quasi-steady state when the turbulence production
from the mean shear is balanced by the turbulence dissipation at the near-surface
region. Hereafter, only the results from t = 40 to 75 are presented.

3.5. Identification of the surface layer and the blockage layer

The existence of the surface layer and the blockage layer is manifest in our DNS
results of shear-flow FST. Figure 5 shows these two layers clearly. Figure 5(a) plots the
vertical variation of ω′rmsx , ω′rmsy , ω′rmsz , and (∂ωz/∂z)

′rms, which give a clear indication of
the surface layer which has a thickness of O(0.1). Figure 5(b) plots the vertical profiles
of the fluctuation velocity components u′rmsi , which show distinctly the blockage layer
of thickness O(0.5) (the macroscale is O(1)).

The surface layer is also evident in the profile of the mean shear ∂u/∂z. Averaging
the stress-free dynamics boundary condition (2.3) over the (x, y)-plane yields

∂u

∂z
= 0 on z = 0. (3.14)

It can be anticipated that ∂u/∂z (but not u itself) drops sharply over the surface layer,
which is shown in figure 6.

As mentioned earlier, a free surface affects the underlying turbulent flow by means
of two mechanisms: first, the dynamic boundary conditions require that the tangential
stresses at the surface vanish; second, the kinematic boundary condition constrains
the motion normal to the surface. The surface layer is where the dynamic boundary
conditions are felt and the blockage layer is where the kinematic boundary condition is
felt. Since the surface layer and the blockage layer are caused by different mechanisms
at the free surface, the roles of the these two layers in the FST are distinct from
each other. In § 5, we investigate the effects of each layer on the turbulence statistics
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in some detail, with the focus on the surface layer since it is unique to FST. Here
we demonstrate the variation of the first derivatives of velocity components ∂ui/∂xj
and the variation of the strain components sij ≡ (∂ui/∂xj + ∂uj/∂xi)/2 over these two
layers.

The vanishing of the tangential stresses at the free surface (2.3) and (2.4) gives

s13 = s23 = 0 on z = 0, (3.15)

and

∂u

∂z
,
∂v

∂z
� 1 on z = 0. (3.16)

Therefore, s13, s23, ∂u/∂z, and ∂v/∂z decrease abruptly over the surface layer. This is
shown in figure 7.

The term s33 = ∂w/∂z, on the other hand, reflects the blockage effects of the surface
and varies over the blockage layer. It follows from continuity that s11 = ∂u/∂x and
s22 = ∂v/∂y also change over the blockage layer. In figure 7, the blockage layer depth
indicated by the above variables appears to be smaller than that in figure 5(b) and
that indicated by ∂w/∂x and ∂w/∂y in figure 7(b). The reason is that the flow field is
inhomogeneous in the vertical direction.

The presence of the surface layer and the blockage layer can be seen in the results
of previous studies. For example, Leighton et al. (1991), Borue et al. (1995), Pan &
Banerjee (1995), and Walker et al. (1996) plot the profile of vorticity components,
from which the surface layer can be observed; Handler et al. (1993), Borue et al.
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(1995), Perot & Moin (1995), and Walker et al. (1996) plot the velocity component
profiles, from which the blockage layer can be identified.

4. Vorticity dynamics in the surface layer
In this section we discuss the vorticity dynamics near the free surface, with emphasis

on the role of the surface layer in the reattachment of the vorticity to the free surface.

4.1. Free-surface observables and the underlying vortex structures

It is known that the most prominent surface signature of FST is that due to connected
normal vorticity (see e.g. Sarpkaya 1996). Figure 8 shows the contours of ωz at the
free surface at six successive time instants t = 58, 61, 64, 67, 70 and 73 from a specific
DNS realization. Note that the (periodic) domains plotted in figure 8 are translated
with the mean longitudinal velocity (cf. figure 3a). Coherent vortex structures are
found scattered on the free surface. If we look at those vortices continuously at
smaller times intervals, we can observe that a positive vortex (ωz > 0) always appears
together with a negative vortex (ωz < 0) and vice versa. Figure 8 also shows that the
normal vortices at the free surface are persistent with slow overall decay rates.

The presence of the aforementioned vortex structures is due to connection of
vortex structures at the free surface. Using the vortex at (−1.4, 0) in figure 8(f) as an
example, we show how surface-connected vortices are generated. Figure 9 shows the
near-surface vortex structures in a small domain of size 2×2×0.75 at the four earlier
time instants t = 58, 61, 64, and 67. The positions of these sub-domains are indicated
in figures 8(a)–8(d). The vortex structures are represented by tracing a bundle of
vortex lines defined as

dx

d`
=

ω

|ω| , (4.1)

where ` is the arc length of the vortex line. A fourth-order Runge–Kutta integration
scheme is used to integrate (4.1).

Figure 9 also plots the contours of ωz at the free surface above the underlying
vortex structures to show their correlations.

Figure 9(a) (t = 58) shows the presence of a large underlying hairpin-shaped vortex
structure (marked C in the figure), which is found to be prevalent in shear-flow FST.
The hairpin has the ‘head’ near the free surface consisting mainly of near-surface
horizontal vorticity and the two ‘legs’ in the bulk flow below. This is opposite to that
in rigid-wall-turbulence case, where the legs of the hairpin are close to the boundary
and the head is in the bulk flow (e.g. Moin & Kim 1985). Near the hairpin structure,
in this case, there are two other vortices (marked A and B in the figure) which are
already connected to the free surface.

As the hairpin vortex structure is swept towards the free surface by the uprising
fluid (‘splat’ event), the head is dissipated quickly in the surface layer where the
dissipation rate for horizontal vorticities is significantly higher. (The effects of the
surface layer on vorticity dissipation are discussed in detail in § 5.3.) The hairpin
vortex begins to break and the two legs connect to the free surface at the ‘shoulder’.
The mechanism for the connection of a hairpin vortex structure to the free surface
is very much the same as the connection of, say, a vortex ring to the surface. The
detailed mechanisms have been studied extensively (see e.g. Zhang, Shen & Yue 1999)
and will not be repeated here.

Figure 9(b) (t = 61) shows such a connection occurring: part of the hairpin vortex
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Figure 8. Evolution of normal vorticity at the free surface. Surface contours of ωz are plotted at
(a) t = 58; (b) t = 61; (c) t = 64; (d) t = 67; (e) t = 70; and (f) t = 73. The small boxes in (a)
through (d) indicate regions where detailed vortex structures underneath are plotted in figure 9.

structure has broken and the two legs (marked C1 and C2) connect to the free surface.
The remaining vortex lines of the hairpin soon also break and connect to the free
surface.

The connection is complete at t = 64 (figure 9c). The two legs are completely
attached to the free surface forming a pair of counter-rotating vortices with opposite
signs for the ωz component. Figure 9c also shows the merging of connected vortices
(in this case C1 with a same-signed vortex A which had previously been connected to
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the surface). At later time, t = 67 in figure 9(d), the opposite-signed leg C2 also merges
with another surface-connected vortex B of that sign. This coherent vortex (B+C2) is
what we see at (−1.4, 0) later at t = 73 (figure 8e). The merging of surface-connected
vortices is also frequently observed in FST (e.g. Gharib, Dabiri & Zhang 1994 for
grid FST; Pan & Banerjee 1995 for open-channel FST).

After the connection, vortices remain attached to the free surface and decay slowly,
as shown in figure 8. In low Froude number cases, the magnitude of the horizontal
vorticity components is much smaller than that of the vertical vorticity, so that the
vortices are nearly perpendicular to the free surface. In the bulk flow below, the
vortices are inclined in the direction of the mean shear flow.

A statistical measure of the structures and mechanisms illustrated above can be
obtained by investigating the spatial distribution of two-dimensional vortex inclination
angles in a way similar to Moin & Kim (1985). If the vorticity vector is projected
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onto the (x, z)- and (y, z)-planes, the two-dimensional vortex inclination angles are
defined as θxz = tan−1(ωx/ωz) and θyz = tan−1(ωy/ωz), respectively, with the sign
convention for the angles and coordinate system shown in figure 10. To emphasize
the stronger vortices, the inclination angles are weighted by the magnitudes of the
respective projections of the vorticity vector (Moin & Kim 1985).

Figure 11(a) and 11(b) show the histograms of vortex inclination angles θxz and
θyz at different depths. Near the free surface, θxz is highly concentrated around
180◦ and 0◦/360◦; while θyz is concentrated around 180◦, 0◦/360◦, and 270◦. The
concentration of θxz and θyz around 180◦ and 0◦ (or 360◦) indicates the dominance of
vertical vorticity, which corresponds to vortices connected to the free surface, while
the concentration of θyz around 270◦ indicates the dominance of spanwise vorticity
pointing in the negative-y direction, which corresponds to the head portion of the
hairpin structures. In the bulk flow (z = −1), the peaks of θxz shift towards 120◦ and
300◦, which indicates that the vortices there are inclined with the mean shear flow.
The concentration of θyz at 270◦ in the bulk reflects the spanwise vorticity of the
two-dimensional mean shear flow.

Following Moin & Kim (1985), θxz and θyz in figures 11(a) and 11(b) are based on
instantaneous vorticity which includes the mean vorticity of the shear flow. The two-
dimensional vortex inclination angles θ′yz based on instantaneous vorticity fluctuations
are plotted in figure 11(c) which shows that, in the bulk flow below (z =−1), the
concentration of θyz around 270◦ is absent for θ′yz while near the free surface, θyz
and θ′yz are similar. Therefore, coherent horizontal vortex structures (head portion of
coherent hairpin structures) do exist near the free surface.

We note that hairpin vortex structures and their connection to the free surface
have been reported in open-channel FST (cf. Rashidi 1997), which makes the physics
of shear-flow FST and open-channel FST closer to each other than to grid FST.
However, the origins of the vortical events in the open-channel FST and the shear-
flow FST are different. In open-channel FST, hairpin vortex structures are generated
at the boundary layer at the solid bottom and are swept to the surface after ejection
from the bottom. In the present flow, vorticity is generated entirely by the shear flow
dynamics.

4.2. Spatial and temporal development of the surface layer

As we show in § 2, the surface layer is a region of rapid variations for the horizontal
vorticity components and the vertical derivative of the vertical vorticity component.
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Figure 11. Histograms of two-dimensional vortex inclination angles near the surface and in the
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The surface layer is, however, not always present: for instance, a uniform flow with a
free surface will have no need for a surface layer; uniform-strength vortex filaments
attached perpendicularly to the free surface also satisfy the boundary conditions (2.8),
(2.9), and (2.10) automatically, and the surface layer is not present. In general free-
surface vortical flows, the surface layer is present whenever and wherever horizontal
vortex filaments approach the free surface.

Figure 12 shows the development of the surface layer during the connection of
hairpin vortex structures to the free surface. Using the hairpin vortex in § 4.1 as
an example, figure 12(a) shows the vertical section of the hairpin structure as it
approaches the free surface. The head portion of the hairpin is a region of high
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Figure 12. Development of the surface layer during a vortex connection process. (a) Contours of
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1/2 on the vertical x, z section at y = −0.49, t = 58, when the hairpin structure in § 4.1

approaches the surface. The surface layer is evident in this case. (b), (c) Contours of |ωz | and

(ω2
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y)
1/2 on the vertical x, z section at y = −0.33, t = 73, when the vortex has connected to the

surface. A surface layer is not present in this case. The contour intervals are 0.2 for all three figures.

horizontal vorticity (mainly ωy) and there exist high gradients between the hairpin
head and the free surface where horizontal vorticities given by (2.8) and (2.9) are
small. The presence of the surface layer at, say, x ∈ ∼ (1.1, 2.1), is quite evident.
Outside such a region, the vertical gradients are not large and the surface layer is
absent.

After a vortex is connected to the free surface, the vertical gradients are smoothed
out and the surface layer is, strictly speaking, not present. This is shown in figure 12
where the above vortex has connected to the free surface (see figure 12b). Figure 12(c)
plotting the (ω2

x + ω2
y)

1/2 contours confirms that horizontal vorticity components are
small underneath and that, in general, a surface layer is absent for a vortex after it
has connected to the surface.

Figure 13 shows a global picture of the spatial distribution of the surface layer.
Figure 13(a) plots the contours of [(∂ωx/∂z)

2 + (∂ωy/∂z)
2]1/2 at the surface z = 0

while figure 13(b) plots the contours of (ω2
x + ω2

y)
1/2 at z = −0.1. In both figures,

the presence of the surface layer is indicated by dark regions where the vertical
derivatives of horizontal vorticity are large. The light regions are locations where
significant near-surface horizontal vorticity is absent (vorticity itself is either small or
has connected to the surface there), and the surface layer is not established there.

In conclusion, a surface layer only exists when/where vortex filaments (which
should contain horizontal components) approach the free surface. In the present
shear-flow FST, connection of vortices to the free surface occurs frequently and the
surface layer is present over a considerable portion of the free surface (see figure 13)
at all times.

The occurrence of hairpin vortex structures in grid FST, on the other hand, is rarer
than that in sheared FST, and the effect of the surface layer is less significant for grid
FST than shear-flow FST. This is discussed in § 5.

Pan & Banerjee (1995) perform an interesting test in their DNS with two different
boundary conditions at the bottom: (a) they first apply the usual no-slip condition
at the bottom; (b) after the flow with no-slip bottom is fully developed, they then
switch the no-slip bottom to a free-slip bottom. In case (a), the ejection from the



Surface layer for free-surface turbulent flows 185

30 40

4

2

0

–2

–4

–4 –2 0 2 4

0 10 20 50

(a)

y

x

1.8 2.4

4

2

0

–2

–4

–4 –2 0 2 4

0 0.6 1.2 3.0

(b)

x

Figure 13. Spatial distribution of the surface layer. (a) Contours of [(∂ωx/∂z)
2 + (∂ωy/∂z)

2]1/2 at

z = 0. (b) Contours of (ω2
x + ω2

y)
1/2 at z = −0.1. The surface layer exists at the dark regions where

the vertical derivatives of horizontal vorticity are large.

wall towards the surface is found to be pronounced. In this case, we can regard the
occurrence of the surface layer to be significant, since the upwelling motions sweep
considerable horizontal vortex filaments (which are generated near the wall) to the
surface. In case (b), Pan & Banerjee’s (1995) results show that the mean shear flow
becomes flattened out immediately and the upwellings are found to disappear. Their
mean shear is much weaker than that in the present study and their flow field (b) is
more like grid FST than the shear-flow FST here. In that case, few horizontal vortices
are swept to the surface and we expect that the surface layer is less significant in
case (b).

4.3. Evolution of normal vorticity at the free surface

As pointed out earlier, the surface layer has little effect on the vertical vorticity
component and the surface-connected vortices are found to be extremely persistent.
We analyse here the vorticity equation to reveal the underlying mechanisms for the
evolution of surface-connected vortices.

The evolution equation of ωz can be written as

∂ωz

∂t
+ v · ∇ωz = ω · ∇w +

1

Re
∇2ωz, (4.2)

where the first term on the right represents vortex turning and stretching, and the
second term vortex diffusion due to viscosity.

Defining ∇′ ≡ (∂/∂x, ∂/∂y, 0) and invoking continuity, we obtain

∂ωz

∂t
+ ∇′ · (ωzv − wω) =

1

Re
∇2ωz. (4.3)
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At the free surface, tangential stresses vanish as in (2.3) and (2.4):

∂u

∂z
+
∂w

∂x
=
∂v

∂z
+
∂w

∂y
= 0 on z = 0. (4.4)

It follows that

∇′ · (wω) =
∂

∂x

(
∂w2

∂y

)
− ∂

∂y

(
∂w2

∂x

)
= 0 on z = 0, (4.5)

and (4.3) reduces to

∂ωz

∂t
+ ∇′ · (ωzv) =

1

Re
∇2ωz on z = 0. (4.6)

If we consider an arbitrary region F on the free surface, it follows from (4.6) that

d

dt

∫ ∫
F
ωz dx dy =

1

Re

∫ ∫
F
∇2ωz dx dy on z = 0. (4.7)

If F is taken to be the entire (periodic) domain, (4.7) becomes trivial since both
integrals involving ωz over F vanish.

We now consider the more general form of (4.3) under the condition (4.4). Multi-
plying (4.6) by nωn−1

z , n = 1, 2, ..., we obtain

∂ωn
z

∂t
+ nωn−1

z ∇′ · (ωzv) =
n

Re
ωn−1
z ∇2ωz on z = 0. (4.8)

After some manipulation we obtain

∂ωn
z

∂t
+ ∇′ · (ωn

zv) = (n− 1)ωn
z

∂w

∂z
+

n

Re
ωn−1
z ∇2ωz on z = 0. (4.9)

In the region F we have

d

dt

∫ ∫
F
ωn
z dx dy = (n− 1)

∫ ∫
F
ωn
z

∂w

∂z
dx dy +

n

Re

∫ ∫
F
ωn−1
z ∇2ωz dx dy on z = 0.

(4.10)

Therefore, for n > 1,
∫∫
Fω

n
z dx dy over the entire free surface, is, in general, no longer

conserved. Of special interest is the case n = 2 which governs the enstrophy:

d

dt

∫ ∫
F
ω2
z dx dy

=

∫ ∫
F
ω2
z

∂w

∂z
dx dy +

2

Re

∫ ∫
F
ωz∇2ωz dx dy

=

∫ ∫
F
ω2
z

∂w

∂z
dx dy︸ ︷︷ ︸

stretching

−
∫ ∫

F
2

Re
∇ωz · ∇ωz dx dy︸ ︷︷ ︸

dissipation

+

∫ ∫
F

1

Re
∇′2ω2

z dx dy︸ ︷︷ ︸
horizontal diffusion

+

∫ ∫
F

1

Re

∂2ω2
z

∂z2
dx dy︸ ︷︷ ︸

vertical diffusion

. (4.11)

In (4.11), the first term is a vortex stretching term, which produces enstrophy. The
second is a dissipation term while the third is the horizontal diffusion out of the
region F. If F is the entire (periodic) free surface, this horizontal diffusion is exactly
zero. The fourth term is the vertical diffusion of the enstrophy. Therefore, over the
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entire free surface the enstrophy is in general not conserved except for a quasi-steady
state in which the stretching term approximately cancels those due to dissipation and
diffusion.

To investigate the evolution of surface-connected vorticity, we first examine the
time evolution of the surface-inclination angle of these vortices. The three-dimensional
vortex surface-inclination angle α is defined as

α ≡ tan−1((ω2
x + ω2

y)
1/2/|ωz|), α ∈ (0◦, 90◦), z = 0, (4.12)

i.e. α is the angle between the z-axis and the vorticity vector ωxi + ωyj + ωzk, as
shown in figure 10.

As expected, α is found to generally decrease as a surface-connected vortex evolves:
as a vortex connects to the free surface, the horizontal components of vorticity (in the
head portion of the hairpin) are not small compared to the vertical component and
the inclination angle is large. After connection, the horizontal vorticity is dissipated
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Figure 15. Conditional average of the evolution of surface-normal enstrophy. Terms in (4.11) nor-
malized by ω2

z are plotted as function of vortex surface-inclination angle α for vortices ωz > 2ωrms
z :

– – – –, (negative) stretching; ———, dissipation; – . – . –, horizontal diffusion; — —, vertical
diffusion; and · · · · · · ·, dissipation for the entire free surface without the condition ωz > 2ωrms

z .

away because of the surface layer. The vertical vorticity dominates and the surface-
inclination angle becomes small. This is shown in figure 14 for typical surface-
connected vortices (cf. figure 8). The vortex surface-inclination angle thus provides a
useful measure of the ‘age’ of a vortex in the connecting/connected process: large α
corresponds to early stages of the evolution and small α later stages.

To examine the roles of the different terms in (4.11) in the evolution of surface-
connected vortices, we perform conditional averaging over the free surface, first for
ωz > Cωrms

z , where C = 2, say, to select the stronger surface vortices, and then for
specific values of α so that the contributions at different stages of the evolution are
separated: i.e. 〈·|ωz > 2ωrms

z ; α〉 where · is a term in (4.11).
Figure 15 plots the conditional-averaged terms in (4.11) as a function of vortex

surface-inclination angle α. Note that negative stretching, i.e. − ∫∫Fω2
z ∂w/∂z dx dy

is plotted in figure 15. It is shown that both vortex stretching and dissipation are
strongly dependent on α, and their magnitudes drop dramatically as α decreases. This
is reasonable since the flow field is more three-dimensional during the early phase
of connection (large α). Also at the early phase, stretching is dominant. The supple-
menting of enstrophy by vortex stretching exceeds the reduction due to dissipation
and diffusion and therefore the enstrophy increases. At the late stage of evolution
(small α), both stretching and dissipation decrease and the role of horizontal diffusion
becomes more and more important. (Note that due to conditional averaging, there
always exists horizontal diffusion into the area where vorticity is weaker.) The vertical
diffusion is always negligible.

The disparate behaviours of vortex stretching at different stages of connection is
manifested in figure 16 which plots the surface contours of ωz , ∂w/∂z, and ω2

z ∂w/∂z, as
well as the underlying vortex lines for the vortex examined in § 4.1 at respectively t =
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Figure 16. Vortex stretching for a surface-connected vortex at different stages of evolution. The
vortex presented here is the one elucidated in § 4.1. Surface contours of ωz , ∂w/∂z, and ω2

z ∂w/∂z
and the underlying vortex lines are plotted at (a) t = 64 (early stage of evolution) and (b) t = 73
(late stage of evolution).

64 (early stage of evolution) and t = 73 (late stage). Note that the strain rate ∂w/∂z,
which governs vortex stretching, is always positive for the whole surface-connected
vortex during the early stage of evolution but becomes small when integrated over
the vortex at a later stage. The latter is controlled by the underlying vortex structure
which generally does not remain (nearly) perpendicular to the free surface in the
shear flow below. The induced strain rate over the surface connection region is thus
in general approximately antisymmetric with a small net integral. This is illustrated
in figure 16(b). The overall consequence is that vortex stretching

∫∫
Fω

2
z ∂w/∂z dx dy

is strong/weak during the early/late stage of the connection. The decrease of both
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Figure 17. Comparison of the decay rate between surface-connected vortices and a two-dimensional
Lamb laminar vortex which is at (a) the same Reynolds number Re = 1000; and (b) ReT ≈ 100
based on eddy viscosity. The symbols represent different surface-connected vortices in figure 8 whose
positions are given in figure 14.

vortex stretching and viscous dissipation in the later phase makes horizontal viscous
diffusion relatively important.

It is instructive to compare the evolution of a surface-connected vortex to that
predicted by a two-dimensional Lamb laminar vortex which has an analytical solution
for the vorticity given by

ω(r, td) =
ΓRe

4πtd
e−r

2Re/4td , (4.13)

where r is the distance from the vortex centre, Γ the total circulation, and td the
decay time. The vorticity at the centre ωcore is given by

ωcore(td) =
ΓRe

4πtd
. (4.14)

To effect comparison, we define an initial time t′ for the connected vortex using the
criterion α 6 20◦, obtain Γ by the integration of ωz over the region ωz > 0.05ωcore

z at
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that time, and obtain the time scale τ = td by solving (4.14) using these values and the
observed ωcore at this (initial) time. The diffusion time is then given by td = t− t′ + τ.

Figure 17 compares the decay rates of surface-connected vortices to that of a Lamb
vortex (solid line) assuming either the actual Reynolds number Re = 1000 (figure
17a), or one based on eddy viscosity (figure 3a) with Reynolds number ReT ≈ 100
(figure 17b). The figures show that the decay rate of surface-connected vortices
is substantially slower than that predicted by eddy viscosity and is in fact more
comparable to that due to laminar diffusion (at Re = 1000). This reflects the fact
that for a vortex which has connected to the surface, dissipation is small as shown in
figure 15 (the dissipation for strong coherent vortices, say conditioned by ωz > 2ωrms

z ,
is even smaller than the average value for all vortices.) The conclusion is that, relative
to surface-parallel vorticity which dissipates rapidly in the surface layer, connected
surface-normal vortices decay slowly and thus remain persistent on the surface. This
persistence of connected vortices has been reported in experiments, see e.g. Sarpkaya
(1996).

We point out that vortex stretching remains a dominant process during most of
vortex connection and the net effect diminishes only as the connection is established
(what net effects that remain help maintain the strength of the connected vorticity).
The three-dimensional effects associated with vortex stretching are thus an important
aspect of FST and quasi-two-dimensional hypotheses (e.g. Gharib et al. 1994; Pan
& Banerjee 1995) do not in general obtain. The three-dimensionality of FST is
also argued by Walker et al. (1996) who base their conclusion solely on turbulence
statistics, which we discuss in the next section.

5. Turbulence statistics
In this section we discuss the roles of the surface layer and the blockage layer in

the statistics of turbulence scales, Reynolds-stress balance, and enstrophy dynamics.

5.1. Turbulence scales

The velocity two-point correlation function is defined as

Rlm(r, z) =
ul(xp)ul(xp + emr)

u′2l
, l = 1, 2, 3, m = 1, 2, (5.1)

where em is the unit vector in the m-direction and r the distance between the two
points. Summation notation is not implied for l = 1, 2, 3.

The Taylor microscale is

λlm(z) =

[
− 2

(∂2Rlm(r, z)/∂r2) |r=0

]1/2

=

[
2u′2l

(∂u′l/∂xm)2

]1/2

. (5.2)

Figure 18 plots the vertical variations of Taylor microscales λlm. The streamwise
scale associated with the spanwise velocity λ21 and the spanwise scale associated
with the streamwise velocity λ12 increase as the free surface is approached. This
phenomenon is consistent with what Handler et al. (1993) find (although the rate
of increase in shear-flow FST here is smaller than that in open-channel FST). To
explain it, Handler et al. (1993) propose a ‘pancake’ model which states that eddy
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Figure 18. Vertical variations of Taylor microscales: ———, λ11; – – – –, λ21;
– . – . –, λ13; · · · · · · ·, λ12; — —, λ22; − . .− . .−, λ32.
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Figure 19. Vertical variations of Taylor microscales for vorticity: ———, λω11; – – – –, λω21; – . – . –,
λω13; · · · · · · ·, λω12; — —, λω22; − . .− . .−, λω32.

structures get flattened as they impinge the free surface. To show this picture more
clearly, we look at the Taylor microscale λωlm which is defined in terms of vorticity
instead of velocity in (5.2). As shown in figure 19, the scales of horizontal vorticity
increase within the blockage layer. The decrease of vertical vorticity scales is believed
to be caused by the stretching of surface-normal vorticity.

Thus, the vertical variations of Taylor microscales (of velocity, and especially of
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Figure 20. Terms in the Reynolds-stress equation for u′2: ———, pressure–strain correla-

tion term 2p′∂u′/∂x; – – – –, viscous diffusion term (1/Re)∂2u′2/∂z2; – . – . –, dissipation term

−(2/Re)∂u′/∂xk · ∂u′/∂xk; — —, transport term −∂u′2w′/∂z; · · · · · · ·, shear flow production term
−2u′w′∂u/∂z. The symbol ◦ corresponds to Fr = 0.7 and • to Fr = 0. Froude number effects are
discussed in § 6.

vorticity) support the ‘pancake’ model proposed by Handler et al. (1993). Apparently,
the ‘pancake’ (vortex structure) gets flattened because of the blockage effect of the
surface when it is swept to the surface by upwelling motions. Therefore, the ‘pancake’
model is a result of the blockage layer.

5.2. Reynolds-stress balance

For FST with a two-dimensional mean shear, the equations for the primary compo-
nents of the Reynolds stresses u′2, v′2 and w′2 are (see e.g. Hinze 1975, p. 323)

∂u′2

∂t
= 2p′

∂u′

∂x︸ ︷︷ ︸
I

+
1

Re

∂2u′2

∂z2︸ ︷︷ ︸
II

− 2

Re

∂u′

∂xk

∂u′

∂xk︸ ︷︷ ︸
III

− ∂

∂z
u′2w′︸ ︷︷ ︸

IV

−2u′w′
∂u

∂z︸ ︷︷ ︸
V

, (5.3)

∂v′2

∂t
= 2p′

∂v′

∂y︸ ︷︷ ︸
I

+
1

Re

∂2v′2

∂z2︸ ︷︷ ︸
II

− 2

Re

∂v′

∂xk

∂v′

∂xk︸ ︷︷ ︸
III

− ∂

∂z
v′2w′︸ ︷︷ ︸

IV

, (5.4)

∂w′2

∂t
= 2p′

∂w′

∂z︸ ︷︷ ︸
I

+
1

Re

∂2w′2

∂z2︸ ︷︷ ︸
II

− 2

Re

∂w′

∂xk

∂w′

∂xk︸ ︷︷ ︸
III

− ∂

∂z
w′3 − 2

∂

∂z
p′w′︸ ︷︷ ︸

IV

. (5.5)
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Figure 21. Terms in the Reynolds-stress equation for v′2: ———, pressure–strain correla-

tion term 2p′∂v′/∂y; - - - -, viscous diffusion term (1/Re)∂2v′2/∂z2; – . – . –, dissipation term

−(2/Re)∂v′/∂xk · ∂v′/∂xk; – –, transport term −∂v′2w′/∂z. The symbol ◦ corresponds to Fr = 0.7
and • to Fr = 0. Froude number effects are discussed in § 6.

Here I are the pressure–strain correlation terms, II the viscous diffusion terms, III the
dissipation terms, IV the transport terms, and V the shear flow production terms.

Figures 20–22 show the vertical profiles of the above terms. Most are similar to
those in open-channel FST (Handler et al. 1993). Compared with grid FST, however,
many are qualitatively different.

Turbulence production

A fundamental difference between shear-flow FST (or open-channel FST) and grid
FST is that the former has turbulence production from the mean shear while the
latter purely decays. For the two-dimensional mean shear u(z) studied in this paper,
(5.3)–(5.5) show that only the u′ equation has the production term −2u′w′∂u/∂z, which
means that only the streamwise velocity component obtains energy directly from the
mean shear flow. Therefore, u′ is larger than v′ and w′, which is shown in figure 5(b).

Figure 20 shows that turbulence production decreases as the free surface is ap-
proached. This decrease is a result of two effects: (i) the reduction of the vertical
velocity w′, as a result of the blockage effect, as the free surface is approached; and (ii)
more importantly, the reduction of the mean velocity shear ∂u/∂z inside the surface
layer. In fact, at the free surface, the mean shear becomes zero in accordance with
the zero mean stress requirement at z = 0.

Dissipation

For the dissipation term, there is a significant reduction within the surface layer for
both the horizontal components u′ and v′ (figures 20 and 21). The decrease in the
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Figure 22. Terms in the Reynolds-stress equation for w′2: ———, pressure–strain correla-

tion term 2p′∂w′/∂z; - - - -, viscous diffusion term (1/Re)∂2w′2/∂z2; – . – . –, dissipation term

−(2/Re)∂w′/∂xk · ∂w′/∂xk; – –, transport term −∂w′3/∂z − 2∂p′w′/∂z. The symbol ◦ corresponds
to Fr = 0.7, / to Fr = 0.35 and • to Fr = 0. Froude number effects are discussed in § 6.

dissipation is a direct result of the zero stress condition at the free surface. More
specifically, if we write explicitly the expression for the dissipation, say for the u′
component,

− 2

Re

∂u′

∂xk

∂u′

∂xk
= − 2

Re

(
∂u′

∂x

)2

− 2

Re

(
∂u′

∂y

)2

− 2

Re

(
∂u′

∂z

)2

, (5.6)

we see from § 3.5 that the value of ∂u′/∂x increases over the blockage layer and the
variation of ∂u′/∂y is small. It is the last term ∂u′/∂z that must decrease abruptly
inside the surface layer to reach the value dictated by the boundary condition (3.16),
which is shown in figure 7(b). The reduction in the overall dissipation is thus due to
the decrease of this term near the free surface.

Unlike in figures 20 and 21, the surface layer has no visible effect on the dissipation
of w′ (figure 22). The dissipation for the w′ component is

− 2

Re

∂w′

∂xk

∂w′

∂xk
= − 2

Re

(
∂w′

∂x

)2

− 2

Re

(
∂w′

∂y

)2

− 2

Re

(
∂w′

∂z

)2

. (5.7)

Figure 7(b) shows that over the blockage layer, ∂w′/∂x and ∂w′/∂y decrease while
∂w′/∂z increases. Thus the surface layer has little effect on the dissipation of w′.

If we now sum the dissipation of u′, v′, and w′, we obtain the conclusion that the
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total turbulent kinetic energy dissipation

ε =
1

Re

(
∂u′

∂xk

∂u′

∂xk
+
∂v′

∂xk

∂v′

∂xk
+
∂w′

∂xk

∂w′

∂xk

)
(5.8)

decreases within the surface layer. Therefore most of the kinetic energy dissipation
occurs outside the surface layer. This result is in contrast with the boundary layer
next to a wall where the opposite is true.

The decreased dissipation at the free surface was first observed by Handler et al.
(1993) and further discussed by Perot & Moin (1995) and Walker et al. (1996). Perot
& Moin (1995) conjecture that the two-componentality of the turbulence near the
surface and therefore the lack of the usual energy cascade leads to the reduction of
dissipation. Walker et al. (1996) explain the reduction by the decrease of horizontal
vorticity, which is in the same spirit as the present explanation (5.6) and (5.7), although
their explanation is slightly more complicated. Walker et al. (1996) write the kinetic
energy dissipation as

ε =
1

Re
(sijsji + 1

2
ωiωi), (5.9)

and show that the decrease in dissipation results from the reduction in the enstrophy
ωiωi. We would like to point out that the reduction in two of the components of
sijsji: s13s31 and s23s32, in the surface layer (figure 7a), also contributes to the decrease
of dissipation. From our DNS data, it is found that the variation in enstrophy is
responsible for about 70% of the reduction in dissipation while the variation in s13

and s23 is responsible for the remaining 30%.

Pressure–strain correlation

Since energy is extracted from the mean shear flow to u′, u′ is larger than v′ and
w′. In order to return to isotropy, energy is further transfered from u′ to v′ and w′
through pressure–strain correlation terms. Figures 20–22 show that 2p′∂u′/∂x is in

general negative while 2p′∂v′/∂y and 2p′∂w′/∂z are in general positive (except near

the free surface where 2p′∂w′/∂z becomes negative). Thus u′ in general loses energy
to v′ and w′.

Figure 22 shows that 2p′∂w′/∂z becomes negative near the free surface, which
means that w′ loses energy to the two horizontal velocity components. As pointed
out by Perot & Moin (1995), near the surface, the inter-component energy transfer is
controlled by both splat and antisplat events: splats transfer energy from w′ to u′ and
v′ but antisplats transform the energy back immediately. It is the imbalance between
the splats and antisplats that results in the inter-component energy transfer, and
this imbalance is controlled by viscous processes such as dissipation and diffusion.
Perot & Moin (1995) find that for grid FST, the viscous effects and therefore the
inter-component energy transfer is small. The results obtained by Walker et al. (1996)
also confirm the relatively small inter-component energy transfer in grid FST.

The situation in shear-flow FST is, however, different. If we assume that the viscous
effects in sheared FST are small, as in the case of grid FST, the energy w′ loses to u′
and v′ should be small. If we take into account the extra energy transfered from u′ to
v′ and w′ because of the mean flow production, the energy that w′ loses should be even

smaller (or w′ may in fact gain energy). However, figure 22 shows that 2p′∂w′/∂z is
not negligible at the surface. As a matter of fact, the inter-component energy transfer
is significant for sheared FST. Therefore, the imbalance between splats and antisplats
near the free surface is not insignificant for shear-flow FST.
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The inter-component energy transfer is also important for open-channel FST (e.g.
Handler et al. 1993). The main difference in inter-component energy between shear-
flow FST/open-channel FST and grid FST can be understood as follows: both shear-
flow FST and open-channel FST are characterized by strong splat motions (which
sweep horizontal vorticity filaments to the surface and make the surface layer clear)
and antisplat motions, although the causes in these two types of flow are different.
The former emerges from the sheared bulk flow while the latter is due to ejections
from the rigid wall. Our experience in grid FST shows that splats and antisplats
are quite rare compared to shear-flow FST and open-channel FST. A good example
is the ‘switch-bottom test’ by Pan & Banerjee (1995), which we discussed in § 4.2.
Therefore, the inter-component energy transfer in shear-flow FST and open-channel
FST is much more important than that in grid FST.

Viscous diffusion and transport

The viscous diffusion terms in shear-flow FST are similar to those in open-channel
and grid FST. Diffusion is directly related to the turbulence fluctuation profile, which
is shown in figure 5(b). Diffusion is small in the bulk flow below and becomes
comparable to other dominant terms only near the surface. For u′ and v′, the
fluctuation increases not only because of the blockage effect of the surface, but also
because of the reduction of dissipation in the surface layer. Viscous diffusion is most
significant in the surface layer. Figures 20 and 21 show that diffusion transports
energy from the near-surface region to the deep region for u′ and v′. For w′, since its
profile is mainly affected by the blockage effect of the surface, diffusion is appreciable
inside the blockage layer instead of the surface layer. Figure 22 shows that w′ diffusion
moves energy from the deep region to the surface.

The transport terms represent the vertical energy transfer due to turbulence velocity
fluctuations (and pressure fluctuation in the case of w′). Since the transport terms
reflect the subtle variations in the fluctuation profiles, we believe they are highly
dependent on the specific problem being studied.

Finally, we remark that the summation of all the right-hand-side terms in (5.3)–
(5.5), which gives the time-rate-of-change of the Reynolds stresses, is small since the
near-surface region is quasi-steady. This is as expected and is in contrast with grid
FST which is purely decaying.

5.3. Enstrophy dynamics

We have seen that the surface layer is manifest primarily in the horizontal vorticity
components rather than in the vertical vorticity component. It is thus natural to expect
that the surface layer will have disparate effects on the dynamics of the horizontal
versus vertical enstrophy components.

The equation for the balance of the enstrophy components is given by (e.g. Tennekes
& Lumley 1972 p. 87; Balint et al. 1988)

∂ω′2x
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= −∂ω
′2
x w
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, (5.10)
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Here the terms are: I, gradient production; II, transport by velocity fluctuations;
III, production due to the gradients of velocity fluctuation; IV, production due to
mean shear; V, mixed production; VI, viscous diffusion; and VII, dissipation.

The vertical variation of the above terms is plotted in figures 23–25. The results
are largely consistent with the open-channel FST figures of Leighton et al. (1991).
Comparing with the grid FST results (Walker et al. 1996), the terms related to hairpin
vortex structures are different.

The most significant effects of the presence of the free surface in all these cases are
the large vertical variations of the viscous diffusion term (VI) and dissipation term
(VII) for the horizontal vorticity within the surface layer where vertical gradients of
horizontal vorticities are high. Hence, both diffusion and dissipation increase sharply
in the surface layer. In the limit of zero Froude number, it can be shown that diffusion
and dissipation must be in balance at the surface (this is also true for w′2). For small
Froude number, such a balance must still approximately obtain.

Unlike the horizontal enstrophy components, the viscous diffusion and dissipation
terms for ω′2z are not affected by the surface layer (figure 25). This is consistent with
our earlier observations that the variation of ωz is small over the surface layer since
it is not ωz but ∂ωz/∂z that is controlled by the surface layer.

The different behaviours of viscous diffusion/dissipation for horizontal vorticity
and vertical vorticity explain the rapid vanishing of the head portion of hairpin
vortices within the surface layer in contrast to the persistence of surface-connected
vortices as discussed in § 4.

For the same reason, the transport term (II), which reflects the vertical variation
of the intensity of vorticity fluctuation, also has disparate behaviour for horizontal
and vertical vorticity components. The transport for ω′2x and ω′2y becomes significant
in the surface layer where ω′x and ω′y attenuate rapidly, and ω′x and ω′y enstrophy

is transported from below to the surface layer. The transport term for ω′2z , on the
other hand, becomes important in the blockage layer instead of the surface layer,
since the fluctuation of ω′z varies over the blockage layer.

Both the surface layer effects and the blockage layer effects are manifest in the
production due to the gradients of velocity fluctuation term (III). To show the
mechanisms more clearly, figures 23(b), 24(b), and 25(b) plot each component of

III. As shown, the production due to stretching (2ω′2x (∂u′/∂x), 2ω′2y (∂v′/∂y), and
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Figure 23. Terms in the enstrophy evolution equation for ω′2x : (a) – . – . –, transport

by velocity fluctuations −∂ω′2x w′/∂z; ———, production due to the gradients of veloc-

ity fluctuation 2(ω′2x (∂u′/∂x) + ω′xω′y(∂u′/∂y) + ω′xω′z(∂u′/∂z)); · · · · · · ·, production due to

mean shear 2ω′xω′z∂u/∂z; − . .− . .−, mixed production 2(∂u/∂z)ω′x(∂u′/∂y); – – – –, vis-

cous diffusion (1/Re)∂2ω′2x /∂z2; — —, dissipation −(2/Re)(∂ω′x/∂xk)(∂ω′x/∂xk). (b) ———,

The total production due to the gradients of velocity fluctuation; – – – –, 2ω′2x (∂u′/∂x);

– . – . –, 2ω′xω′y(∂u′/∂y); − . .− . .−, 2ω′xω′z(∂u′/∂z). The symbol ◦ corresponds to Fr = 0.7 and• to Fr = 0. Froude number effects are discussed in § 6.

2ω′2z (∂w′/∂z)) is dominant near the surface. Their significant increase in the blockage
layer is due to the increase in stretching (∂u′/∂x, ∂v′/∂y, and ∂w′/∂z) there. (Leighton
et al. 1991 and Walker et al. 1996 explain this by using the ‘splat’ concept. Walker et
al. 1996 further argue that FST is fully three-dimensional up to the surface based on
the vertical stretching ∂w′/∂z.)

The surface layer makes 2ω′2x (∂u′/∂x) and 2ω′2y (∂v′/∂y) different from 2ω′2z (∂w′/∂z).
For horizontal components, the stretching of horizontal vorticity decreases sharply
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Figure 24. Terms in the enstrophy evolution equation for ω′2y : (a) – . – . –, transport

by velocity fluctuations −∂ω′2y w′/∂z; ———, production due to the gradients of veloc-

ity fluctuation 2(ω′xω′y(∂v′/∂x) + ω′2y (∂v′/∂y) + ω′yω′z(∂v′/∂z)); · · · · · · ·, gradient production

−2ω′yw′(∂2u/∂z2); − . .− . .−, mixed production 2(∂u/∂z)ω′y(∂v′/∂y); – – – –, viscous diffu-

sion (1/Re)∂2ω′2y /∂z2; — —, dissipation −(2/Re)(∂ω′y/∂xk)(∂ω′y/∂xk). (b) ———, The total

production due to the gradients of velocity fluctuation; – – – –, 2ω′xω′y(∂v′/∂x); – . – . –,

2ω′2y (∂v′/∂y); − . .− . .−, 2ω′yω′z(∂v′/∂z). The symbol ◦ corresponds to Fr = 0.7 and • to Fr = 0.
Froude number effects are discussed in § 6.

over the surface layer since ωx and ωy diminish at the free surface. The stretching
of vertical vorticity, on the other hand, continues to increase up to the free surface,
since ωz does not need to decrease in the surface layer.

An important observation is the significance of the ωy stretching (figure 24). It
increases inside the blockage layer and reaches its peak just outside the surface layer.
This peak is more prominent than that of ωx (figure 23); it is also much larger than
the horizontal stretching in grid FST (Walker et al. 1996). The significance of the ωy
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Figure 25. Terms in the enstrophy evolution equation for ω′2z : (a) – . – . –, transport by ve-

locity fluctuations −∂ω′2z w′/∂z; ———, production due to the gradients of velocity fluctuation

2(ω′xω′z(∂w′/∂x) + ω′yω′z(∂w′/∂y) + ω′2z (∂w′/∂z)); − . .− . .−, mixed production 2(∂u/∂z)ω′z(∂w′/∂y);

– – – –, viscous diffusion (1/Re)∂2ω′2z /∂z2; — —, dissipation −(2/Re)(∂ω′z/∂xk)(∂ω′z/∂xk). (b)

———, The total production due to the gradients of velocity fluctuation; – – – –, 2ω′xω′z(∂w′/∂x);

– . – . –, 2ω′yω′z(∂w′/∂y); − . .− . .−, 2ω′2z (∂w′/∂z). The symbol ◦ corresponds to Fr = 0.7 and • to
Fr = 0. Froude number effects are discussed in § 6.

stretching in shear-flow FST is due to the hairpin vortex structures investigated in § 4.
The head portion of hairpin vortices corresponds to the enhanced spanwise vorticity
ωy , which is shown in figure 5(b). As the hairpin head enters the blockage layer, it is
stretched by the diverging flow due to blockage effect of the surface (‘pancake’ model
or ‘splat’ model). Therefore, the above difference in ωx and ωy stretching is consistent
with the hairpin vortex structures discussed in § 4.

The remaining terms are characteristic of sheared FST and not present in grid FST.
The gradient production term (I) exchanges enstrophy between the mean vorticity
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and the vorticity fluctuation and only the ωy equation has this term. The production
due to mean shear (IV) is similar to the production term in the Reynolds-stress
equation and only ωx has this term. The mixed production (V) is present for all the
three components of vorticity. An interesting observation from figures 23–25 is that
the summation of all the mixed production for each vorticity component is close to
zero, which means that the mixed production somehow redistributes the enstrophy
among the vorticity components.

6. The effect of the Froude number
6.1. Overview

In the study of FST of small Froude numbers, it is often suggested that the free
surface can be approximated as a flat free-slip plate, in which case free-slip boundary
conditions apply at z = 0:

∂u

∂z
=
∂v

∂z
= 0 , (6.1)

w = 0 , (6.2)

∂p

∂z
= 0 . (6.3)

These obtain also from (2.3), (2.4), (2.5), and (2.7) (and (2.1)) in the limit Fr → 0.
Since the free-slip-plate approximation does not involve motions of the free surface,

the question remains whether free-surface effects on the turbulent flow are indeed
negligible for relatively small Froude numbers. To study this, we compare our DNS
results for the free-surface case (Fr = 0.7) with another set of (twenty) simulations
under identical conditions but using free-slip-plate (Fr = 0) boundary conditions
(6.1)–(6.3).

Table 1 shows the comparison of relevant turbulence statistics between the two
cases. In table 1, ωq ≡ ((ω′rmsx )2 + (ω′rmsy )2 + (ω′rmsz )2)1/2 is the fluctuation intensity of
enstrophy; and p is the horizontal average of pressure which satisfies

p− pbottom = −w2 + w2
bottom = −w2 . (6.4)

Equation (6.4) is obtained by averaging the z-component of the Navier–Stokes equa-
tions (2.1) over the (x, y)-plane and integrating with respect to z.

We remark that Fr = 0.7 is based on the initial mean velocity deficit U. A more
appropriate scale here is the turbulence velocity fluctuation at the surface q0 ' 0.1U,
which yields the Froude number Frq ' 0.07. Thus, the difference between the free-
slip-plate turbulence and the free-surface turbulence is expected to be quite small, in
particular for all the quantities considered in table 1.

The exception to the above observation turns out to be quite subtle. Figures 23
and 24 show that inside the surface layer, the variations of dissipation and diffusion
for horizontal vorticity in the Fr = 0.7 case is slightly larger than those in the Fr = 0
case. This implies that the vertical gradients of horizontal vorticities increase for the
Fr = 0.7 case. The blockage layer effects, on the other hand, are weakened by the free
surface. This can be seen most clearly in figure 22: the pressure–strain correlation
term and the transport term in the free-surface case are considerably smaller than
those in the Fr = 0 case, even for such small Froude numbers.

In the following subsections, we discuss the effects of (small) Froude numbers on
the surface layer and the blockage layer, respectively.
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z = 0 z = −0.125 z = −1

Fr = 0.7 Fr = 0 Fr = 0.7 Fr = 0 Fr = 0.7 Fr = 0

u 0.3771 0.3763 0.3924 0.3921 0.5206 0.5221

u′rms 0.8171× 10−1 0.8196× 10−1 0.8154× 10−1 0.8170× 10−1 0.1031 0.1041

v′rms 0.7825× 10−1 0.7946× 10−1 0.7301× 10−1 0.7397× 10−1 0.8793× 10−1 0.8811× 10−1

w′rms 0.3003× 10−2 0 0.2732× 10−1 0.2666× 10−1 0.7396× 10−1 0.7359× 10−1

q 0.1132 0.1139 0.1132 0.1135 0.1546 0.1549

ω′rmsx 0.3961× 10−1 0 0.3624 0.3510 0.5180 0.5073

ω′rmsy 0.3664× 10−1 0 0.3903 0.3913 0.4147 0.4382

ω′rmsz 0.2710 0.2656 0.2972 0.2929 0.4572 0.4527

ωq 0.2789 0.2663 0.6122 0.6039 0.8065 0.8102

p− pbottom −0.9018× 10−5 0 −0.7464× 10−3 −0.7108× 10−3 −0.5470× 10−2 −0.5415× 10−2

p′rms 0.8434× 10−2 0.8448× 10−2 0.8519× 10−2 0.8526× 10−2 0.1143× 10−1 0.1145× 10−1

h′rms 0.4251× 10−2 0 — — — —

Table 1. Comparison between free-surface turbulence (Fr = 0.7) and free-slip-plate turbulence (Fr = 0) at t = 60.
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Figure 26. (a) Free-surface elevation h and (b) surface vorticity ωy , induced by an underlying
vortex approaching the free surface. The position and time is the same as in figure 12(a). In
(b), solid lines represent positive contour values while dashed lines represent negative values.
The contour increment is 0.1.

6.2. Effects of Froude number on the surface layer

The horizontal vorticity ωx and ωy at the surface is given by (2.8) and (2.9). At
a free-slip plate, ωx and ωy are both zero. At a free surface, however, the surface
vorticity components ωx and ωy are non-zero, although the magnitude is small for
low Froude numbers.

Figure 26 shows the free-surface elevation and surface vorticity induced by an
underlying vortical structure (we use, as an example, the vortex structure in figure
12a). The coherent vortex structure in the figure (dashed lines) is the cross-section
of a hairpin head, whose ωy component is negative. As the hairpin approaches the
free surface, secondary surface vorticity is induced. This can be seen most clearly
at the position (x = 1.2, z = 0). The free surface is depressed and the induced
surface vorticity has a positive ωy component, which is opposite in sign to the main
vortex underneath. These observations are consistent with those for laminar vortex
connection at a free surface (see e.g. Zhang et al. 1999).

The opposite signs of the surface vorticity and the vortex underneath which gener-
ates it is confirmed by statistics. The correlation between the vorticity at the surface
and that underneath is defined as

Cor〈ωi(0), ωi(z)〉 ≡ ωi(0)ωi(z)

ωrms
i (0)ωrms

i (z)
, i = 1, 2, 3 , (6.5)

where no summation notation is implied, and ωi(0) ≡ ωi|z=0 and ωi(z) ≡ ωi|z=z etc.
Figure 27 plots the correlation function (6.5) for ωx, ωy , and ωz . Cor〈ωz(0), ωz(z)〉

decreases slowly over the blockage layer, which means that the surface-normal vor-
ticity is well correlated with the vortex structures underneath. The correlation func-
tions for ωx and ωy , on the other hand, decrease sharply over the surface layer which
shows that the structure of horizontal vorticity changes dramatically near the free
surface. This result is of fundamental importance when information from surface
sensing (such as the imaging of a ship wake) is used to deduce structures of the
underlying flow.
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Figure 27. Correlation between the vorticity at the surface and vorticity underneath.
———, Cor〈ωx(0), ωx(z)〉; – – – –, Cor〈ωy(0), ωy(z)〉; – . – . –, Cor〈ωz(0), ωz(z)〉.

Figure 27 shows that the correlation functions for ωx and ωy are negative for small
z. The surface layer is the region where horizontal vorticity changes from ‘outer’
values to the small values at the surface layer. Comparing with the Fr = 0 case
where surface vorticity is zero, the free surface produces surface vorticity which signs
opposite to those underneath. Therefore, the vertical gradients in the free-surface case
are larger than those in the free-slip-plate case. This explains why the surface layer
effects are slightly larger for FST in figures 23(a) and 24(a).

It should be pointed out that surface vorticity at low Froude numbers is small
compared to the vorticity of underlying vortex structures. Therefore, the effects of
small Froude numbers on the surface layer is not pronounced. The Froude number
effects on the blockage layer is, however, much more prominent, which we investigate
next.

6.3. Effects of Froude number on the blockage layer

As we pointed out, quantities associated with the pressure distribution have consid-
erable difference between the free-slip-plate turbulence and free-surface turbulence,
even for small Froude numbers.

Figure 22 of § 5.2 plots the vertical variation of the terms in the Reynolds-stress
equation for w′2, for both the free-surface (Fr = 0.7) case and the free-slip plate
(Fr = 0) case. To provide a further check, we plot here also the results for Fr = 0.35.
As shown in figure 22, the effects of Froude numbers on dissipation and diffusion
are negligible. However, the differences in the pressure–strain correlation term and
transport term are significant.
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Figure 28. Splat and antisplat processes in FST. (a) Horizontal velocity vector (u′, v′) at the free
surface. The background shows contours of the pressure fluctuation. (b) Velocity vector (v′, w′) in a
vertical y, z section (at x = −4.7).

The transport term can be written as

− ∂

∂z
w′3 − 2

∂

∂z
p′w′ = −3w′2

∂w′

∂z
− 2w′

∂p′

∂z
− 2p′

∂w′

∂z
. (6.6)

The first two terms on the right are negligible for small Froude numbers while the
third term cancels the pressure–strain correlation term. As a result, at the free surface,
the transport term approximately balances the pressure–strain correlation term for
small Froude numbers. (The balance is exact for zero Froude number.) We thus focus
our attention on the pressure–strain correlation and perform a detailed analysis of
the blockage effects of the free surface relative to a free-slip surface.

As fluid particles approach the free surface, they are forced to diverge and move
in the horizontal directions. This is called the splat event. Based on the conservation
of mass, the motion approaching the free surface must be balanced by the motion
leaving the surface. The latter is called antisplat event. Splat and antisplat events
are discussed by Perot & Moin (1995) for the zero Froude number case. Here we
investigate the effects of the Froude number on these events.

The splat and antisplat events are manifested in the DNS results. Figure 28 shows a
typical example. In a splat event (left side of figure 28), fluid moving towards the free
surface turns near the surface and diverges horizontally. In an antisplat event (right
side of figure 28), fluid particles moving towards each other at the surface meet and
leave the surface. The centres of the splats and antisplats in figure 28(a) appear as
respectively outward and inward nodal points of the velocity field in the (x, y)-plane
and are therefore points of high pressure. In regions between splats and antisplats,
horizontal velocities are high and the pressure is generally low (figure 28a).
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Figure 29. Area histogram based on the conditional average of splat and antisplat processes.

It should be pointed out that there exists another form of antisplat, which is the
stretching of surface-connected vortices shown in § 4.3 (as well as another form of
splat for the half-compression of surface-connected vortices at late evolution stages).
Unlike that in figure 28, the antisplat occurring at a surface-connected vortex is
characterized by high horizontal velocity and low pressure.

The splat event in figure 28 corresponds to the ‘upwellings’ described by Pan
& Banerjee (1995) or the ‘splat’ model Leighton et al. (1991) use. The antisplat
event in figure 28 corresponds to the ‘downdraughts’ of Pan & Banerjee (1995).
The aforementioned surface-connected vortices are the same as the ‘spin’ model of
Leighton et al. (1991). To understand the effects of Froude number on pressure–
strain correlation, we focus on the first two since they are responsible for most of the
differences due to Froude number in the inter-component energy transfer.

To investigate the statistics of splat and antisplat events over the free surface, we
perform conditional averaging based on different stages of the splat and antisplat
processes. The condition for such averaging is specified at each grid point on the
free surface by the value of −(∂u′/∂x+ ∂v′/∂y)∗/q∗. Here the superscript ∗ indicates
that the quantity is normalized by its r.m.s. value. Positive/negative ∂u′/∂x + ∂v′/∂y
(negative/positive ∂w′/∂z) corresponds to splats/antisplats respectively. This value,
further divided by velocity fluctuation q ≡ (u′2 + v′2 + w′2)1/2, quantifies the splat
and antisplat processes. Large values indicate that the fluid particle is close to the
core of a splat/antisplat (large horizontal velocity divergence but small velocity at
the stagnant points) while small values correspond to the neutral region between a
splat and an antisplat (small divergence but large velocity when travelling along the
surface).

Figure 29 shows the area histogram according to the above criterion. It is shown
that most grid points at the free surface are located in the neutral region between
splats and antisplats. It is also seen that the area of the antisplat region is larger than
that of the splat region. (The ratio is about 55% to 45%.)



208 L. Shen, X. Zhang, D. K. P. Yue and G. S. Triantafyllou

0.010

0.005

0

–0.005
–4 –2 0 2 4

p«
, q

2 /
2

– (∂u«/∂x + ∂v«/∂y)*/q*

Splat (∂u«/∂x + ∂v«/∂y > 0) Antisplat (∂u«/∂x + ∂v«/∂y < 0)

–3 –1 1 3
–0.5

0

0.5

1.0

∂w
«/∂

z

Figure 30. Conditional average of pressure fluctuation p′, turbulence kinetic energy
q2/2 = (u′2 + v′2 + w′2)/2, and ∂w′/∂z during splat and antisplat processes: ———, p′; – – – –,
q2/2; · · · · · · ·, ∂w′/∂z. The symbol ◦ refers to Fr = 0.7, / to Fr = 0.35 and • to Fr = 0.

Figure 30 shows the conditional average of turbulence kinetic energy and pressure
fluctuation at each stage of splat/antisplat processes. At the free surface, following
a fluid particle from splat to antisplat (from left to right in figure 28), the pressure
is high at the splat while the kinetic energy is low there; in the middle between the
splat and antisplat, the kinetic energy is high but the pressure is low; at the antisplat,
the kinetic energy returns to a low value and the pressure increases again. This is
consistent with figure 28.

It is important to point out that the curve of pressure fluctuation in figure 30 as
well as the area histogram in figure 29 are not left–right symmetric; and the curve of
∂w′/∂z in figure 30 is not left–right anti-symmetric. Otherwise the overall integration

of the pressure–strain correlation p′∂w′/∂z will be zero. It should also be mentioned
that the region of surface-connected vortices is located near the central part in figure
30 since q is large for surface-connected vortices.

Figure 32 plots the histogram of pressure–strain correlation, which is the product
of pressure fluctuation and ∂w′/∂z (figure 30) weighted by the area under figure 29.
The histogram is not left–right anti-symmetric about the splat and antisplat. The
integration gives the overall negative pressure–strain correlation at the free surface
(figure 22), which indicates that the net energy transfer is from the vertical velocity
component to horizontal components.

An important observation from figure 30 is that, although features like (u′2 +
v′2 + w′2)/2 and ∂w′/∂z do not depend very much on the Froude number, the
pressure distribution during the splat and antisplat process is sensitive to the Froude
number. It is shown that the pressure at splats and antisplats in the free-surface
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Figure 31. Conditional average of free-surface elevation h′/Fr2 and viscous stress (2/Re)∂w′/∂z
during splat and antisplat processes: ———, h′/Fr2; – – – –, (2/Re)∂w′/∂z. The symbol ◦ refers to
Fr = 0.7, / to Fr = 0.35 and • to Fr = 0. Here h′/Fr2 is undefined for Fr = 0 where we plot the
value p′ − (2/Re)∂w′/∂z instead.

case is considerably lower than that in the free-slip-plate case. The reduction of the
pressure in the free-surface case shows that the deformable free surface relieves such
impinging. Figure 30 also shows that due to the motions of the free surface, the
pressure distribution at the free surface is smoother than that at the free-slip plate.

It should be noted that the reduction and the smoothing of the pressure dur-
ing splats/antisplats at a deformable surface does not cause an obvious reduction
in the global statistics of pressure fluctuation p′rms (table 1). This issue is subtle:
the deformable free surface only changes the local distribution of pressure in the
splats/antisplats process. Therefore, only when we use the conditional averaging tech-
nique to highlight the distribution in the splats/antisplats process, does the difference
caused by different Froude numbers appear as shown in figure 30.

The difference in the pressure distribution is caused by the distribution of free-
surface elevation. The free-surface dynamic boundary condition (2.5) states that the
pressure fluctuation p′ at z = 0 is given by two parts: the hydrostatic pressure h′/Fr2

and the viscous stress (2/Re)∂w′/∂z. Figure 31 plots the distribution of h′/Fr2 and
(2/Re)∂w′/∂z during the splat and antisplat process. During a splat (∂w′/∂z < 0),
p′ is smaller than h′/Fr2, while during an antisplat (∂w′/∂z > 0), p′ is larger than
h′/Fr2. As figure 31 shows, the dependence of (2/Re)∂w′/∂z on the Froude number is
negligible. It is the hydrostatic pressure h′/Fr2 that is sensitive to the Froude number.
Note that, similar to the pressure distribution, the r.m.s. value of h′/Fr2 for the whole
(x, y)-plane does not differ much as the Froude number changes, i.e. h′rms is scaled by
Fr2. It is the local distribution of h′/Fr2 that is sensitive to the Froude number which
is only shown using the conditional averaging in figure 31.
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Figure 32. Histogram of pressure–strain correlation p′∂w′/∂z based on the conditional average of
splat and antisplat processes: (a) Fr = 0.7; (b) Fr = 0.35; and (c) Fr = 0.

Since the pressure distribution over the splats/antisplats process depends on the
Froude number, the pressure–strain correlation is directly affected. Figure 32(a–c)

compares the histogram of p′∂w′/∂z among the Fr = 0.7, 0.35, and 0 cases. It is
shown that the free surface transfers considerably less energy from the vertical velocity
component to horizontal components than the free-slip-plate. As shown in figure 22,
the effect of Froude number on the pressure–strain correlation is felt throughout the
blockage layer.

In conclusion, it is shown that the local distribution of pressure (free-surface
elevation) during the splats/antisplats process is sensitive to the Froude number.
Accordingly, the pressure–strain correlation in free-surface turbulence is considerably
less than that in free-slip-plate turbulence, even at low Froude numbers. Although the
difference in pressure–strain correlation is partially balanced by the corresponding
variations in the remaining terms in the Reynolds-stress equations (figures 20–22)
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and the eventual influence on Reynolds stresses is small, as shown in table 1, the
sensitivity of the pressure–strain correlation to the Froude number indicates the
essentially different physics in the inter-component energy transfer for FST. This is
important for the modelling of FST. Moreover, the Froude number effects on the
pressure field are of fundamental importance for the generation of surface waves. The
effects revealed here are of leading order and should still obtain (and be stronger)
for higher Froude numbers where other mechanisms such as those associated with
nonlinear free-surface effects are present.

7. Discussion and conclusions
In this paper we use DNS to study turbulent shear flow with a free surface

at low Froude numbers. We identify a three-layer structure which is essential to
understanding free-surface turbulence: the deeply submerged part of the flow, a
blockage layer (thin compared to the vertical extent of the shear in the flow), and a
much thinner surface layer immediately under the free surface. The blockage layer
results from the kinematic boundary condition at the free surface, and the surface
layer is caused by the dynamic zero-stress conditions.

The blockage layer is manifested in the vertical velocity fluctuations, which decrease
to those imposed by the kinematic boundary condition at the surface. This reduction
of the vertical velocity fluctuation occurs without any appreciable increase of kinetic
energy dissipation, and is primarily compensated by an increase of the horizontal
velocity fluctuations. This effect has been observed in different flows with a free
surface (e.g. Handler et al. 1993; Pan & Banerjee 1995; Walker et al. 1996), and can
therefore be considered as a generic feature of free-surface turbulence.

The surface layer is indicated by the sharp transition of the two horizontal vorticity
components and the vertical derivative of the vertical vorticity component, which
are reduced from their bulk (isotropic) values to those imposed by the zero-stress
conditions at the free surface. As a result, the surface layer is a region of decreased
kinetic energy dissipation and increased enstrophy dissipation. The latter increase is
highly localized around vortex connection events. In fact once an attachment event
is completed, the enstrophy dissipation is locally reduced, resulting in significantly
slower decay of the attached vortex. Since attachment events occur on a continuous
basis, the enstrophy dissipation averaged over the horizontal plane shows an increase
inside the surface layer as a permanent and prominent feature.

The surface layer makes it possible for vorticity features at the free surface to
differ substantially not only from those in the bulk but also from those inside the
blockage layer. This result is important for practical applications when information
from surface sensing is used to deduce characteristics of the underlying flow.

Finally, we identify the importance of non-zero Froude number on free-surface
turbulence. We show that, even for very low Froude numbers, there is a finite
reduction of the pressure–strain correlation at the free surface relative to that obtained
using a free-slip flat plate as a model for the free surface. This is due to the
free-surface elevation which can cause pressure variations comparable to turbulent
pressure fluctuations. This should be taken into account in the modelling of free-
surface turbulence when the details of the near-surface hydrodynamics are of interest
(for example, in the spreading of surfactants).

This research was supported by the Office of Naval Research under the program
management of Dr E. P. Rood.
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